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Abstract: Most of the classical machine learning (ML) models 

was developed to deal with non-structured domains of learning 

where data in input domain is represented as fixed size vector of 

properties. This kind of representation cannot always capture the 

true nature of the data which are naturally represented in some 

structured form like sequences and trees. Learning in structured 

domains (SDs) is a new field of study which allows for a 

generalization of ML approaches to the treatment of complex data, 

offering both new impulses for theory and applications.  Since 

relationships are the key in SD learning, edges (relationships) are 

more important than vertices (indivisible component of objects) in 

SD learning. In the existing framework for graph processing of 

artificial neural network models, vertices are given more 

importance than edges. Again geometrical information of structured 

data is not considered in the framework. In this paper, a new 

framework for graph processing is proposed in which edges are 

considered as key and also geometrical information is taken into 

account. 
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1. Introduction 

 

In traditional machine learning, an input object in the input 

domain is represented by a fixed-size vector of properties (or 

features). Though this kind of representation is quite easy to 

realize and process, sometimes it cannot completely capture 

the “true nature” of the data which naturally presents itself in 

a structured form, since some important contextual 

information may be associated with the structure of the data 

itself. While learning in structured domains is quite difficult 

to realize and process, it is the generalized machine learning 

approach to deal with complex data structures. A non-

structured domain can be thought as a special or restricted 

case of structured domains. A domain of real valued vectors 

can be treated as a special case of a domain of sequences of 

real valued vectors (i.e., it is a domain of sequences, all of 

size one), which in turn can be considered as a special case 

of a domain of trees (i.e., a sequence can be treated as a tree 

where all the internal nodes have a single child), which in 

turn can be considered as a special case of a domain of 

directed acyclic graphs (DAGs), and so on. Therefore, 

focusing on structured domains, does not exclude the 

possibility to exploit the traditional vector-based learning 

models. In fact, traditional vector-based approaches are just 

specific instances of a more general structure-based 

framework. 

In traditional machine learning approaches, graphs or trees 

are mapped into simpler representations, like vectors. 

However the performances of these approaches differ largely 

with the application at hand. In fact, the preprocessing phase 

is quite problem dependent and the implementation of this 

approach usually requires a time-consuming trial and error 

procedure. Moreover, the inherent topological information 

contained in structural representations might be partially lost. 

    Recently, new connectionist models, capable of directly 

elaborating trees and graphs without a preprocessing phase 

were proposed [1]. These have been extended using support 

vector machines [2]–[5], recursive neural networks [6] – [13] 

and SOMs [14] to structured data.  

   In the family of recursive neural networks (RNNs), 

constructive approach, recursive cascade correlation (RCC), 

has been introduced in [6]. RNN models realize an adaptive 

processing (encoding) of recursive (hierarchical) data 

structures. A recursive traversal algorithm is used to process 

(encode) all the graph vertices, producing state variable 

values for each visited vertex. In fact, all of these approaches 

can handle only sub-classes of graphs, not general graphs 

[i.e., rooted trees, directed acyclic graphs (DAG), and 

directed positional acyclic graphs (DPAG)].  Very recently 

as a first attempt, Neural Networks for Graphs (NN4G) [16] 

introduced the concept to the treatment of general class of 

graphs. It is an incremental approach where state values of 

vertices are updated gradually using cascade correlation 

learning algorithm. The principle idea behind the framework 

of the models is to obtain a flat description of the 

information associated to each vertex of graphs. In our 

proposed framework the idea is to obtain a flat description of 

the information associated to each edge instead of each 

vertex of graphs. 

The rest of the paper is organized as follows. Section 2 

introduces the preliminaries and notations on the domains. In 

Section 3, existing framework for graph processing is 

discussed. Our new proposed framework is explained in 

Section 4. The proposed framework is again enhanced in 

Section 5 considering geometrical information. Finally, 

future directions and conclusion is given in Section 6.   

 

2. Preliminaries and notations 

 

    A labeled graph (or graph)  is a quadruple , 

where V is the nonempty finite set of vertices/nodes, and E is 

the finite set of edges:  The last two 

items  and  associate a vector of real numbers to each 

vertex and edge, respectively. In fact,  and  are 

mappings as  and , where  

and  are the sets of vectors of real numbers with 

dimension  and , respectively. Vertex labels and edge 

labels are denoted by , and  (or ) respectively. The 

symbol  with no further specification represents the vector 

obtained by stacking together all the labels of the graph. The 
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symbol | · | denotes the cardinality or the absolute value, 

according to whether it is applied to a set or to a number. 

   If  is directed graph, each edge of  is an ordered 

pair of vertices, where  is the children or successor of the 

parent or predecessor . For undirected graph, the ordering 

between  and  in   is not defined, i.e.,  

= . Vertex  and edge  are said to be incident with (on 

or to) each other, if vertex  is an end vertex of edge . The 

number of edges incident on a vertex  with self-loops 

counted twice is called the degree of vertex  and denoted 

by . A cycle is a finite alternating sequence of vertices 

and edges beginning and ending with same vertex such that 

each edge is incident with the vertices preceding and 

following it and no edge and vertex (except initial and final 

vertex) are repeated. A graph with no cycle is called an 

acyclic graph.  

    Given a set of labeled graphs  and a graph , we 

denote the set of vertices of  as  and the set of its 

edges as .  Given a vertex , the vertices adjacent to  

(or neighbors of ) are those connected to it by an edge and 

are represented by , i.e 

.  Hence, . 

Similarly, given an edge , the edges adjacent to               

(or neighbors of  ) are those edges having a common end 

vertex with the given edge and are denoted by , i.e., 

, where 

 is the set of two end vertices of . 

If the graph is directed, the neighbors of  (or ), either 

belong to the set of its children or successors  (or ) 

or to the set of its parents or predecessors  (or ). 

    A graph is said to be positional if a function  is defined 

for each vertex  and assigns a different position  to 

each neighbor , otherwise the graph is non-

positional. Thus, combining the properties described so far it 

is possible to specify various graph categories: Directed 

Acyclic Graphs (DAGs), Directed Positional Acyclic Graphs 

(DPAGs) and so on. 

    Here we assume a class of input structured patterns as 

labeled graphs. Let a target function  be defined as            

 (or , i.e.,  maps a graph 

 and one of its vertex  (or edge ) into a vector of real 

numbers. Our objective is to approximate the target function 

. More precisely, in classification problems codomain of  

is  (i.e., vectors of natural numbers), whereas in 

regression problems the codomain is . In graph 

classification,  does not depend on  (or ), i.e. only one 

target is given for each graph. In vertex (or edge) 

classification problems, each vertex (or edge) in a given set 

has a target to be approximated. 

    In this paper we face the problem of devising neural 

network architectures and learning algorithms for the 

classification of structured patterns, i.e., labeled graphs.    

Fig. 1 reports the standard way to approach this problem 

using a standard neural network. Each graph is encoded as a 

fixed-size vector which is then given as input to a 

feedforward neural network for classification. This approach 

is motivated by the fact that neural networks only have a 

fixed number of input units while graphs are variable in size. 

The encoding process is usually defined in advance and does 

not depend on the classification task. It is a very expensive 

trial and error approach. 

   
  Standard and recurrent neurons are not suitable to deal 

with labeled structures. In fact, neural networks using this 

kind of neurons can deal with approximation and 

classification problems in structured domains only by using a 

complex and very unnatural encoding scheme which maps 

structures onto fixed-size unstructured patterns or sequences. 

To solve this inadequacy of standard and recurrent neural 

networks the generalized recursive neuron was proposed in 

[6]. 

    The generalized recursive neuron is an extension of the 

recurrent neuron where instead of just considering the output 

of the unit in the previous time step, we consider the outputs 

of the unit for all the vertices which are pointed by the 

current input vertex. 

 

3. General Framework for Graph Processing 
 

To define a general framework for graph processing, we 

need to implement a function  to compute 

an output   for each pair . The principle idea is 

to derive a flat description of the information associated to 

each vertex . An object of the domain of interest can be 
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Figure 1. Classification of graphs by standard 

neural networks  
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represented by a vertex and its description is represented by a 

vector of real numbers called state denoted by , 

where the state dimension  is a predefined parameter. In 

order to obtain a distributed and parallel processing 

framework, the states are computed locally at each vertex. A 

reasonable choice is to design  as the output of a 

parametric state transition function , that depends on the 

vertex label  and on the relationships between  and its 

neighbors 

 

    

 

where  is the set of neighbors of vertex ,  and 

 are the sets containing the states and the labels of the 

vertices in  respectively, and  is the set of the 

edge labels between  and its neighbors (Fig. 2).  

Once each node has a vectorial representation, it can also 

be assigned an output , evaluated by another parametric 

function , called output function 

 

              

 

Eqns. (1) and (2) define a method to produce an output  

) for each vertex of the graph . 

Moreover, the symbolic and subsymbolic information 

associated with the vertices is indeed automatically encoded 

into a vector by the state transition function. We can show 

the computation graphically substituting all of the vertices 

with “units” that compute the function . The “units” are 

connected according to graph topology. The resultant 

network is called the encoding network and will be the same 

topology as the input graph. Since the same parametric 

functions are applied to all the vertices, the units of the same 

type share the same set of parameters. 

 
 

Let  and  be the vectorial functions obtained by 

stacking all the instances of  and , respectively. Then 

Eqns. (1) and (2) can be rewritten as 

 

                        

and 

                            

 

where  represents the vector containing all the labels and 

collects all the states. Eq. (3a) defines the global state , 

while Eq. (3b) computes the output. It is relevant to mention 

that Eq. (3a) is recursive with respect to the state , thus  is 

well defined only if Eq. (3a) has a unique solution. In 

conclusions, the viability of the method depends on the 

particular implementation of the transition function .    

In our supervised framework, for a subset  of 

vertices, called supervised vertices, a target value  is 

defined for each . Thus an error signal (usual sum of 

squared error) can be specified as, 

      

                 

 

This signal drives an error backpropagation procedure that 

adapts the parameters of  and  so that the function 

realized by the network can approximate the targets, 

i.e.  . 

In practice, Eq. (1) is well suited to process positional 

graphs, since each neighbor position can be associated to a 

specific input argument of function . In non–positional 

graphs, this scheme introduces an unnecessary constraint, 

since neighbors should be artificially ordered. A reasonable 

solution consists in calculating the state  as a sum of 

“contributions”, one for each of its neighbors. Thus, state 

transition function can be rewritten as 

 

  

 

where  is the -th neighbor and  is the number of 

neighbors of . Several possible implementations of the 

functions  (or ) and can be selected, e.g., Recursive 

Neural Networks(RNNs), Graph Neural Networks(GNNs), 

and recently developed NN4G [16]. RNNs, GNNs and 

NN4Gs differ in the implementation of the state transition 

function  and in the class of graphs that can be processed.  

 

4. Relationship oriented framework for Graph 

Processing 

 
In the previous framework for graph processing, vertices 

are given more importance, i.e., state value of a vertex is 

computed based on the information associated with it and its 

neighbors. In our new proposed framework, state value is 

computed for each edge (instead of each vertex) on the 

information associated with it and its neighbors.  

To define edge based framework for graph processing we 

must implement the function  instead of 

 to compute an output  for each pair 

. The principle idea behind this is to obtain a flat 

description of the information associated to each edge  

instead of each vertex . The description of an edge can be 

represented by a state value denoted by , where the 
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Figure 2. The state  depends on the 

information in its neighbors 
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state dimension  is a predefined parameter. To obtain a 

distributed and parallel processing framework, the states are 

computed locally at each edge.  The state value  can be 

designed as the output of a parametric state transition 

function  (instead of  ), which depends on the edge label 

 and on the labels of vertices adjacent to the edge and its 

neighbors 

 

       

 

where  is the set of neighbors of edge e,  and  

are the sets containing the states and the labels of the edges 

in  respectively, and  is the set containing the 

labels of adjacent vertices of the edge  (Fig. 3). 

Again each edge has a vectorial representation, it can also 

be assigned an output , evaluated by another parametric 

function  (instead of ), called output function 

 

               

 

Eqns. (6) and (7) define a method to produce an output 

) for each edge of the graph . 

The symbolic and sub-symbolic information associated 

with the edges are automatically encoded into a vector by the 

state transition function . The encoding network will be the 

same topology as the input graph. The units of the same type 

share the same set of parameters, since the same parametric 

functions are applied to all the edges. 

Similar to vertex based framework, we can define the 

functions  and  by stacking all the instances of  and , 

respectively and Eqns. (6) and (7) can be rewritten as 

 

                  

      

 

where  represents the vector containing all the labels and  

collects all the states. Eq. (8a) defines the global state , 

while Eq. (8b) computes the output. Note that Eq. (8a) is 

recursive with respect to the state , thus  is well defined 

only if Eq. (8a) has a unique solution. The method differs 

from one implementation of the transition function ( ) to 

another. 

 
In the supervised framework, for a subset  of edges, 

called supervised edges, a target value  is defined for 

each . Thus an error signal can be specified as, 

          

 

This signal drives an error backpropagation procedure that 

adapts the parameters of  and  so that the function 

realized by the network can approximate the targets, i.e., 

.  

A reasonable solution (like previous framework) consists 

in calculating the state  as a sum of “contributions”, one 

for each of its neighbors. Thus, state transition function can 

be rewritten as 

 

 
 

where  is the -th neighbor and  is the number of 

neighbors of . New neural network models like RNNs, 

GNNs can also be developed to implement the functions     

 (or ) and . 

 

5. Learning in Geometrical Structured Domains 
 

There are certain application domains where the “true 

nature” of the data not only depends on the hierarchical 

relationship of the data but also on the geometrical 

structure/topology of the data which naturally presents itself 

in a geometrical structured form and some contextual 

information is associated with the geometrical structure of 

the data itself. Quantitative structure-property/activity 

relationships (QSPR/QSAR) are fundamental aspects in 

chem.-informatics, where the aim is to correlate chemical 

structure of molecules with their properties (or biological 

activity) in order to achieve prediction.  Since each molecule 

is a 3-D geometrical structure, the 3-D geometrical structure 

itself should have some impact on QSPR/QSAR. If we can 

develop a model that can learn geometrical topology, then 

the accuracy of QSPR/QSAR analysis of chemical 
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compounds may be improved more. We can find other 

applications also where learning in geometrical structured 

domains (GSD) can be incorporated to get better 

performance. 

In Eq. (1), the label  of vertex  represents the 

information associated with the corresponding indivisible 

component object  of structured data.  In fact,  is a fixed 

size vector of real numbers where each element of  

represents a property or feature of the component object. 

Each component object itself is an unstructured (indivisible) 

data whereas these component objects are interconnected 

among them to form a structured data as a whole. 

In both the frameworks of graph processing, geometrical 

information of structured data is not incorporated to compute 

the state values of vertices, which is essential to capture the 

true nature of geometrical structured data; in fact, only 

hierarchical nature of structured data is captured. We can 

incorporate relative coordinate information (if available) of 

each component object of structured data to calculate the 

state value of the corresponding vertex. Hence, Eq. (1) could 

be changed as 

 

     

 

and Eq. (6) could be rewritten as 

 

     

 

where and ,  are the vectors of coordinate of 

vertices  and  respectively. Based on dimension or size of 

vector  and/or  we can generalize the model into           

- dimensional geometrical structured data. If input domain 

of data is 2-D geometrical structure, the size of and/or  

will be 2. Similarly, the size of and/or  will be 3 when 

the data of input domain is 3-D geometrical structure. 

 

6. Future Directions and Conclusion 

 
Though the new framework proposed in this paper, can 

capture the true nature of structured data, the success of the 

framework still lie on the proper implementation of the 

framework. Hence further research could be done on the 

development of new artificial network models. 

Again the development of model for learning in 

geometrical structured domains (GSD) needs to investigate 

on the integration of symbolic and sub-symbolic approaches. 

The integration of symbolic and sub-symbolic approaches is 

a fundamental research topic for the development of 

intelligent and efficient systems capable of dealing with tasks 

whose nature is neither purely symbolic nor sub-symbolic. It 

is common opinion in the scientific community that a 

extensive variety of real-world problems require hybrid 

solutions, i.e., solutions combining techniques based on 

neural networks, fuzzy logic, genetic algorithms, 

probabilistic networks, expert systems, and other symbolic 

techniques. A very popular view of hybrid systems is one in 

which numerical data are processed by a sub-symbolic 

module, while structured data are processed by the symbolic 

counterpart of the system. Unfortunately, because of the 

different nature of numerical and structured representations, 

a tight integration of the different components seems to be 

very difficult.  

Learning in structured domains can be used in various 

fields of applications such as natural language processing, 

image processing, speech processing, computer vision, 

chem.-informatics, bioinformatics, etc. Hence, a simple 

solution for general class of graphs is anticipated. The NN4G 

model is a relatively simple solution for dealing with fairly 

general classes of graphs by sub-symbolic approaches; 

similar solution for geometrical structures is also expected. 

We hope that the introduction of simple and general 

approaches (e.g., NN4G) in structured domains will be 

attracted to ML researchers for widespread applications. 
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